Összkerékhajtás a Subarunál

Összkerékhajtás a Subarunál

1980: mechanikus kapcsolható négykerékhajtás és a „Dual-Range”
Az ősi kapcsolható négykerékhajtás rendszerből kiindulva a Subaru a rendszert tovább fejlesztette. A Subaru 1800, kapcsolható négykerékhajtás rendszer mellett a sebességváltóba elvezetett egy plusz áttételt. Egy kar meghúzásával egy fogaskerékpár kapcsolódott össze és a hátsó tengelyt is bekapcsolta a hajtásba. Egy másik kar meghúzásakor aktiválódott egy másik áttétel a sebességváltóban, ez a Dual Range, a „felező”.

1983: pneumatikus kapcsolható négykerékhajtás
A Liberonál és a Justynál is beállította a Subaru a négykerékhajtást, de a kapcsolat elektropneumatikusan jött létre gombnyomásra, amely a sebességváltón volt elhelyezve. A sebességváltóban egy membrándoboz volt elhelyezve, melyhez mágnesszelep csatlakozott, egyik oldalon a motor szívóhatásával összekötve, a membrán másik oldalán az atmoszférikus nyomás hatott. Ez a nyomáskülönbség aktiválta a membránnal összekötött kapcsolótengelyt, ami a fix kapcsolatot biztosította a hátsó tengellyel.
1987: Állandó négykerékhajtás
Az XT Coupéval kezdődött az állandó négykerékhajtás kora a Subarunál.
Először a négykerékhajtást az ötsebességes kéziváltóval és a négysebességes automata váltóval kombinálták. A kéziváltónál a középső differenciál elosztotta a meghajtóerőt az első- hátsó tengelyhez, a fellépő fordulatszámkülönbséget a tengelyek között elektro-mehanikusan zárta: egy elektromos kapcsoló aktivált egy mechanikus zárókilincset mindig 100 %-an.

t57xt.jpg

1988: Állandó négykerékhajtás viscozárral
Az első generációs Legacynál először alkalmazott a Subaru önzáró viscokupplungot. Alapvetően a sebességváltó hasonló az XT-vel, de a középső differenciál az első- és hátsó tengely közti fordulatszám különbség függvényében önműködően, fokozatmentesen tud teljesen zárni. Ez a rendszer még egyes mai modellekben is használatos.

t58legak.jpg

2005 STI-AWD állandó négykerékhajtás Planétakerék-Középdifferenciállal, Helical LSD, DCCD

Az Impreza WRX STI-nek , a WRX alapkiadáshoz képest sportos előnye van: a hatsebességes sebességváltó mellett egy bolygókerékrendszerrel szerelt középdifferenciált fejlesztett ki. A kuplung oldó-állásában, a nyomaték eloszlás az első-hátsó tengely között 36-64 %. Ezt a nyomaték beállítást a vezető maga megváltoztathatja.
Egy forgókapcsoló segítségével a pilóta az elektromagnetikus kuplungot mozgatja, amivel a bolygókerekek a kiválasztott program szerint változtatják a nyomatékot.

t59dccd.jpg
(DCCD – Driver Controlled Differential) A maximális zárásnál a bolygókerekek osztják a z erőelosztást 50-50 %-ban.
A Helical LSD a frontdifferenciálnál optimalizálja a vonóerőt az első kerekeknél.

t60lsd.jpg

Automata váltó

1981: Automata többtárcsás erőátvitel-4WD
A MultiPlateTransfer -4WD (MP-T) kihasználja az automata sebességváltó  hidraulikus nyomását és kombinálja az automatát az összkerékhajtással, amelyet útközben egyszerű gombnyomásra  kapcsolhatunk. Ez a rendszer egy héttárcsás kupplungból áll a kimeneti tengelyen, amely a hátsó meghajtó tengellyel köti össze. A kapcsolható összkerékhajtás útközben a  hidraulikus nyomást a váltó olajpumpájától a többtárcsás kuplungra viszi át, ami így automatikusan összezáródik és a forgatónyomatékot a hátsó meghajtó tengelyre viszi át. Így kiegyenlíti az MP-T a fordulatszám különbéget az első és hátsó kerekek között. Az „auto 4WD” intelligens Összkerék-Módot jelent, amelynél a hidraulikus nyomást a többtárcsás kuplungra a fékre lépés, és az ablaktörlő bekapcsolása jelentette. (sic!)

1987: Állandó összkerékhajtás
A Subaru XT automatánál ACT-4 (Active Control of Torque) a nyomatékmegosztás differenciált: mechanikus az első kerék- tengelyhez, egy pár egyforma fogaskerékkel; hidraulikus a hátsó tengelyhez, egy olajban futó többlamellás kuplungon keresztül.

1989: ECTV-sebességváltó és kapcsolható összkerékhajtás
A Justynál, amely ECVT váltóval szerelt, az összkerékhajtást gombnyomással lehetett aktivizálni. A kapcsoló hidraulikusan mozgatott egy kapcsolótengelyt, amely egy csúszó muffal az elosztómeghajtást fixen összekapcsolta.

1991: Állandó összkerékhajtás VTD-vel
A Gran Turizmo SVX –nél a Subaru bevetette a továbbfejlesztett automataváltót a változó forgatónyomaték elosztóval együtt (VTD : Variable Torque Distribution). A középdifferenciál egy bolygókerék egységből áll és (a hátsó differenciál viscokupplunggal) ez vezeti a motorerőt normál esetben 36%-ban az első kerekekre, 64 %-ban a hátsókra. Az új erőelosztással az elektronika az eddigi technológiával szemben a forgatónyomatékot új szisztémával osztja el, hogy a legjobb vonóerőt biztosítsa. A hidraulikus lemezzárás fokozatmentesen zárja a bolygókerékrendszert a fellépő fordulatszám különbségnél és osztja el a nyomatékot az első- és hátsó kerekek között. A viscokupplung a hátsó tengelyen működik azért, hogy semennyi erő ne vesszen kárba a kipörgő kerekek miatt.

1998: Állandó összkerékhajtás VTD-vel és VDC-vel
A két rendszert a Subaru a Legacy csúcsmodellnél vetette be. A Hardware maradt a régi, az elektronikus vezérlés a szenzorok révén CAN kommunikációval jutnak a VDC vezérlőegységbe. (Vehicle Dynamics Control)

2004: Állandó összkerékhajtás optimalizált VTD-vel és VDC-vel
Az újonnan fejlesztett öt sebességes automata váltó VTD-vel egy bolygókerék rendszeren keresztül tudja a többtárcsás zárólemezekkel a meghajtó nyomatékot relatív széles határok között az első és hátsó tengelyek között elosztani. Ezért illik az automata a VTD-vel különösen azokhoz az autókhoz, amelyek VDC-vel vezéreltek, mivel ez a vezérlőegység jól kommunikál az automata vezérlőegységével. A vezérlőegység felismeri az autó felül,- vagy alulkormányozottságát, információt küld a sebváltó vezérlőegységének. Ez redukálja a többtárcsás lemezzáron keresztül a hajtónyomatékot az instabillá vált tengelyen.
Ez a rendszer működik a 2004-től a 3.0 Legacykban és az Outbackben.

A technika részletesen
A lemezzár felépítése és működése
Automata váltó VTD-vel
A sebességváltóból kimenő forgatónyomaték a bolygókerékegységhez jut a primér napkeréken keresztül, az meghajtja a bolygókerekeket. Ezek állandó kapcsolatban vannak a bolygókeréktartóval, amely összeköttetésben áll az első tengelyhez vezető lehajtófogaskerékkel. A hátsó bolygókerekek a sekunder napkeréken keresztül meghajtják a hátsó tengelyhez vezető meghajtó tengelyt.
A meghajtóerő elosztását az első- és hátsótengelyhez végül a végleosztó szabályozza. A lemezzár zárja a fellépő fordulatszám különbségnél az első és hátsó tengely között a bolygókerékrendszert. A normál erőmegosztás 36/64 % a lemezzáron keresztül fokozatmentesen automatikusan megváltoztatható. Emellett a zárási fok nagysága a fordulatszám különbség nagyságától függ és a nagy különbség esetén akár 100 % is lehet.

A többlamellás kuplung működése és felépítése
(Automata sebességváltó ACT-4)

Az olajban futó tárcsás kuplung a váltakozóan elhelyezett külső- és belső lamellákból áll. A külső lamellák (acéllamellák) a bolygókeréktartóval vannak szoros kapcsolatban. A belső lamellák (dörzslamellák) a lamellatartón a hátsó tengely meghajtó tengelyével vannak szorosan összekötve. A végmeghajtás házban elhelyezkedő dugattyúkat hidraulika mozgatja. A dugattyúkra ható olajnyomást egy érzékelővel vezérelt szelep szabályozza, amely a jeleket a sebességváltó vezérlő egységtől kapja. A zárás szabályozására az automatavezérlőhöz a legfontosabb beérkező jelek szolgálnak: a sebességszenzornak a fordulatszám információik és a VDC vezérlőegységtől bejövő információk. Ezen keresztül ismeri fel az elektronika az autó terhelését és az adott helyzetben fellépő fordulatszámkülönbséget az első- és hátsó tengely között. Ezen információk alapján számolja ki a vezérlőegység minden útkörülménynek megfelelően a munkahengerben szükséges olajnyomást, amely a lemellákat szorítja össze. Minél nagyobb a nyomás, annál nagyobb a henger összenyomó ereje, annál nagyobb a meghajtóerő a hátsó tengelyen.

A viscokuplung felépítése és működése (Manuális váltó középső differenciállal)
Kívülről- belülről jól szigetelt házban, tengelyeken külső- és belsőlamellák vannak rögzítve. A tárcsák szilikon olajban futnak, a belső és külső lamellák nem érintkeznek egymással. A külső lamella meghatározott sebességgel forog, a belső áll. A külső lamella forgásával a folyadék ugyan azzal a sebességgel forog. Ha a ház (külső lamella = kapcsolat az első tengelyhez) és a kerékagy (belső lamellák = kapcsolat a hátsó tengelyhez) között fordulatszám különbség van, Pl. mikor egy kerék, vagy tengely megcsúszik, úgy ez az áramláskülönbség kényszererőt indukál, amely – mint ellenállás – a forgó külső lamellákra hat a forgatónyomatékot átadja a hátsó tengelyre.
Olyan a hatás, mint mikor a csuporban kanállal mézet forgatunk. Ha lassan mozog a kanál, a csupor nem mozdul, ha gyorsan forgatom, a csupor is ugyanúgy forog.
A fennálló fordulatszám esetén a szilikon olaj felmelegszik, és a házat teljesen kitölti. A szilikon olaj a hő hatására besűrűsödik, a nyomás a zárt házban növekszik és meghatározott ponton a külső- és belső lemezeket összepréseli. A középső differenciál teljesen zár és erős kapcsolat jön létre az első és hátsó tengely között. Ha csökken a fordulatszám különbség, az olaj hőmérséklet csökken, oldódik a differenciálban a két tengely közötti zárás, a visco zár visszatér a normál üzemmódba.

VDC (Vehicle Dynamics Control)
A Subaru fejlesztési célja optimalizálni az úttartás stabilizációját csúszós úton (a középső differenciál zárásával) és a biztonságos úttartást száraz úton (optimális nyomatékelosztással). Ezen feltételeket sikerült elérni a VDC és a forgáspont visszajelzés összehangolásával. Ez a rendszer dolgozik a 2004-től kiadott 3.0 Legacyban, Outbackben és ma már az összes Subaru típusokban.

A µ-Estimator (µ-Érzékelő) nem igényel különleges szenzorokat, mégis precíz és robosztus. Érzékeli az autó keresztgyorsulását, ad egy értéket, melyet többféle adat befolyásol, tbbk. a kerék karakterisztikája. Ezt a pillanatnyilag adott értéket is felhasználva osztja a középső differenciál a nyomatékot a két tengely között.
Ha hóval fedett az út, a kontrollszisztéma másként működik. A pillanatnyi stabilitásfaktort „K” -t, mint indexet használja fel a rendszer a kormányzáshoz. A „K” értéke összeáll a VDC szabályozó egység számára felhasznált bejövő információkból, úgymint a kerékfordulatszám, a hossz- és keresztgyorsulás, kormány-szögállás, a forgató nyomaték, féknyomás, motor-forgatónyomaték és a kiválasztott sebességfokozat –információiból. Ezen adatok alapján összehasonlítja a VDC a computerben rögzített adatokkal az aktuális közlekedési szituációból adódó bejövő adatokat és utasítást ad a végrehajtó szerveknek a cselekvésre.
Túlkományozottságnál a „K” pillanatnyi stabilitásfaktor érték negatív, alulkormányozottságnál pozitív.
Példa: Az autó túl gyorsan megy be egy balkanyarba, jobbra ki akar törni. A VDC érzékeli a szenzoraival, hogy a gk. túlkormányzottá vált, ezért intézkedik: a rendszer fékezi egymástól függetlenül a kanyar-belső kerekeket, egyúttal csökkenti a forgatónyomatékot és a motorteljesítményt, csökkenti mindkét értéket, – ezzel a sebességet valamint az oldalgyorsulást is, ezzel megállítja az autó kitörési kísérletét. Az autó biztonságosan megy a kanyarban.

t61kanyar.jpg

Hogy a könnyelmű pilótákat visszavezesse a biztonság ösvényére, Masaru Katsurada a Subaru fejlesztőmérnöke intézkedett: legyen a rendszer feladata, hogy az autó fizikai határait túllépve a motormanagement és a fékrendszer felhasználásával az autót hossz- és keresztirányban stabilizálja. A technikusok úgy állítsák be a VDC-t, hogy azért az autó a sportos karakterét ne veszítse el. Az összmunka célja az volt, hogy a négy meghajtott kerékkel összeköttetésben, egy reménytelen helyzetben, a fizikai határ közelében a VDC rövid, de határozott segítséget nyújtson.
A Subaru összkerékhajtású autóinak az útdinamikaszabályozás – a „VDC” – magas biztonságot nyújt a mai elérhető legmagasabb technikai csúcson. 2007-től a 3.0 Legacyban és Outbackben a rendszer tovább finomodott az Si-Drive bevezetésével.

Gyűjtötte, írta Dr. Déry Péter

Vélemény, hozzászólás?

Az email címet nem tesszük közzé.